|     Inicio    |   |         |  |   FOROS      |  |      |      
   Elastix - VoIP B4A (Basic4Android) App inventor 2 PHP - MySQL
  Estación meteorológica B4J (Basic4Java) ADB Shell - Android Arduino
  AutoIt (Programación) Visual Basic Script (VBS) FireBase (BD autoactualizable) NodeMCU como Arduino
  Teleco - Emisora de A.M. Visual Basic Cosas de Windows Webs interesantes
T Búsqueda en este sitio:


.

Arduino en español
Circuitos con Arduino - Juan Antonio Villalpando

-- Tutorial de iniciación a Arduino --

Volver al índice del tutorial

____________________________

46B.- Processing.

- Processing es un software gratuito que mejora al IDE de Arduino, una de las características es que podemos ver gráficos en su pantalla.

- Lo bajamos de su página oficial: https://processing.org/download/?processing

- El archivo comprimido de bajada para la versión de Windows 64-bit tiene un tamaño de 118 MB. (Descomprimido ocupará 234 MB).

- Lo descomprimimos y obtenemos estos ficheros. No es necesario instalarlo, simplemento pulsamos en processing.exe. Deberemos tener actualizado Java.

- Vamos a curiosear, entramos en: Archivos / Ejemplos / Demo / Graphics / Planets

Saldrán planetas en movimiento...

- Seguimos curioseando en los Ejemplos y Demo y observaremos que con este software podemos crear código y visualizar imágenes.

- Se podría utilizar una pequeña cámara VGA para el Arduino y ver las imágenes captadas mediante este programa.

- Si no conocías este software, habrás visto la cantidad de posibilidades gráficas que tiene.

- Nosotros lo vamos a utilizar con el Giroscopio visto en el tutorial anterior.

_________________________________________________
1.- Vistazo al Processing.

- Entramos en la página... https://processing.org/tutorials/gettingstarted/ y realizamos el código de ejemplo...

Dibujo de círculos.

void setup() {
  size(480, 120);
}

void draw() {
  if (mousePressed) {
    fill(0);
  } else {
    fill(255);
  }
  ellipse(mouseX, mouseY, 80, 80);
}

_________________________________________________
2.- Cargar librería de Arduino en el Processing.

- Indico dos maneras de trabajar con el Processing:

1.- Hay un código en el Arduino. El Arduino conectado por USB al ordenador como siempre. Miramos el puerto del Arduino. No activamos el Serial Monitor.

El Processing se comunicará con el puerto del Arduino. El Arduino ejecutará su código. En el código del Arduino habrá instrucciones de forma Serial.print que enviará valores al puerto serie, es decir al COM21.

- Hay otro código en el Processing. El Processing tomará los valores que el Arduino envió al puerto serie y con esos valores ejecutará el código que tenga el Processing.

Este es el método más utizado en los tutoriales del giroscopio.

2.- Cargamos en el Processing la librería para funcionar como Arduino. Es la librería Arduino de David A. Mellis que indico en la imagen.

El código del Processing comenzará con estas líneas...

import processing.serial.*;
import cc.arduino.*;

En realidad los códigos del Processing serán distintos a los del IDE de Arduino, por ejemplo este sería el sketch Blink de parpadeo del LED13 de Arduino:

Blink para el Processing

import processing.serial.*;
import cc.arduino.*;
Arduino arduino;
int ledPin = 13;

void setup()
{
//println(Arduino.list());
arduino = new Arduino(this, Arduino.list()[0], 57600);
arduino.pinMode(ledPin, Arduino.OUTPUT);
}

void draw()
{
arduino.digitalWrite(ledPin, Arduino.HIGH);
delay(500);
arduino.digitalWrite(ledPin, Arduino.LOW);
delay(1000);
}

Ver1

Ver2

_________________________________________________
3.- Giroscopio + Arduino + Processing.

- Este código no funciona eficientemente, pero lo podemos probar.

- En este caso todo el código está en el Processing, ya que hemos importado la librería de Arduino.

import processing.serial.*;
import cc.arduino.*;

Processing

import processing.serial.*;
import cc.arduino.*;

Arduino arduino;
int ledPin = 13;
int buttonPin = 8;
int minimo=300, maximo=0;
float value=0;
float first_time, time;
float teta=0;

void setup()
{
  size(400,400);
  println(Arduino.list());
  //arduino = new Arduino(this, Arduino.list()[1]); // v2
  arduino = new Arduino(this, Arduino.list()[0], 9600); // v1
  arduino.pinMode(ledPin, Arduino.OUTPUT);
  arduino.pinMode(buttonPin, Arduino.INPUT);
  arc(200,200,100,100,0,TWO_PI);
  frameRate(60);
  delay(7);
}

float sens= 0.512;
float offset= 320;
float count= 0;
float valor =0;
float aux1=0,aux2=0;
int[] contador={0,0,0};

void draw() {
  first_time=millis();
  if (mousePressed == true) {
    fill(255,0,0);
    aux1=0;
    aux2=0;
    contador[0]=0;
    contador[1]=0;
    contador[2]=0;
    teta=0;
    arduino.digitalWrite(ledPin, Arduino.HIGH);
  } else {
    fill(0,0,0);
    arduino.digitalWrite(ledPin, Arduino.LOW);
  }
  
//####################################################################//
//                                                                    //
//    Gyro                                                            //
//  Sensibilidade 2.5mV/ º/s  =  0.512 counts/ º/s                    //
//  Offset 320 counts = 1562mV = 1.562V                               //
//  4.88 mV/count   //    0.2048 count/mV                             //
//                                                                    //
//####################################################################//

count =0;
for(int i=0;i<20;i++){
  
   count = count + arduino.analogRead(0); 
  
}

count = count /20;
if((int)count==319) contador[0]=contador[0]+1;
if((int)count==320) contador[1]=contador[1]+1;
if((int)count==321) contador[2]=contador[2]+1;

valor = (count - offset ) / sens;
aux1=aux1+(int)count;
aux2=aux2+(int)valor;

//line(200,200,200*cos(teta),200*sin(teta));

println("count: "+(int)count+" valor: "+valor);
println("soma1: "+aux1+" soma2: "+aux2);
println("319: "+contador[0]+" 320: "+contador[1]+" 321: "+contador[2]);
//println("cos: "+cos(valor)+" sin: "+sin(valor));
println();
time=millis()-first_time;
println("tempo: "+time);
teta=teta+valor*time/1000;
println("teta: "+teta);
line(200,200,100*cos(radians(teta))+200,100*sin(radians(teta))+200);
}
 

________________________________________________
4.- Giroscopio + Arduino + Processing. Este es el proyecto que debes hacer.

- En este ejemplo tendremos un código en el Arduino, que enviará valores al puerto serie COM21. Y otro código en el Processing que tomará esos valores y ejecutará su código.

- Tenemos un dibujo que se moverá en la pantalla del Processing cuando movamos el giroscopio.

- En recuerdo y agradecimiento a Fabio Varesano que desarrolló y publicó sus trabajos sobre el giroscopio y la librería FreeIMU.

- Esto es lo que hará este código: al mover el giroscopio se mueve una imagen en la pantalla del Processing.

1.- Disponemos de un Arduino UNO.

- Conectamos el Arduino al giroscopio con Vcc, Gnd, SDA y SCL.

2.- Bajamos e instalamos estas librerías en la carpeta libraries de Arduino.

Bajas la librería MPU6050. La descomprimes y la copias en la carpeta libraries del IDE de Arduino (Estoy utilizando el IDE 1.0.6)

Aquí he puesto las librerías MPU6050, la MPU60X0 y I2Cdev. Solo es necesaria, por ahora la MPU6050, pero más adelante utilizaremos las otras dos.

librerias_para_giroscopio.zip

3.- Bajamos e instalamos esta librería en el Processing.

FreeIMU.zip

La debes copiar en la carpeta libraries del Processing, en mi caso está carpeta está en mis Documentos / Processing.

Equipo / Bibliotecas / Documentos / Processing / libraries

- Para consultar dónde está la carpeta de libraries, pulsamos en Archivo / Preferencias...

- En esta imagen observamos la carpeta de la librería FreeIMU junto a otras.

2.- Bajamos este código y lo cargamos en el IDE de Arduino.

MPU_6050_test.ino (Código para el IDE 1.0.6 de Arduino, es el que hemos utilizado en esta página.)

MPU_6050_test.pde (Código para el IDE 022 de Arduino) (El IDE 022 lo podemos bajar de https://www.arduino.cc/en/Main/OldSoftwareReleases)

(Podemos ejecutar este código en el Arduino y ver el resultado en su Serial Monitor. Saldrán números hexadecimales. Una vez visto, debemos cerrar el Serial Monitor).

3.- Bajamos este código y lo cargamos en el Processing.

FreeIMU_cube1.zip

[En mi version es un archivo .pde]

En el código anterior cambia en esta línea el COM21 y pones el que tiene tu Arduino.

final String serialPort = "COM21"; //

4.- Saldrá un dibujo del giroscopio que se moverá según movamos el original.

- Puedes ir a la carpeta data y cambiar las cuatro caras del dibujo.

topside = loadImage("MPU6050 A.png");//Top Side
downside = loadImage("MPU6050 B.png");//Botm side
frontside = loadImage("MPU6050 E.png"); //Wide side
rightside = loadImage("MPU6050 F.png");// Narrow side

- Compilarlo.

- Una vez visto su funcionamiento vamos a Archivo / Exportar aplicación...

- Y obtendremos una carpeta en donde estárá la aplicación que funcionará independientemente del Processing.


 

____________________
5.-
Giroscopio + Arduino + Processing. Código. Otro proyecto.

Vamos a seguir este tutorial:

http://diyhacking.com/arduino-mpu-6050-imu-sensor-tutorial/

- En este ejemplo hay que conectar el terminal 2 del Arduino, correspondiente a una interrupción con el terminal INT del módulo.

 

1.- Bajas la librería MPU6050. La descomprimes y la copias en la carpeta libraries del IDE de Arduino (Estoy utilizando el IDE 1.0.6)

Aquí he puesto las librerías MPU6050, la MPU60X0 y I2Cdev, puede ser que ya tuvieras alguna instalada antes. También son necesarias la MPU60X0 y la I2Cdev.

librerias_para_giroscopio.zip

 

2.- Entramos en el IDE del Arduino y abrimos el archivo MPU6050_DMP6.ino que se encuentra dentro de la librería MPU6050.


(Fíjate en la carpeta Processing, más adelante, en el punto 6 de este tutorial, entraremos en esta carpeta para tomar el archivo que utilizará el Processing)

3.- Lo cargamos en el Arduino UNO. Abrimos el Serial Monitor.

- Fíjate que he modificado el código con respecto al original estas dos líneas deben estar así:

#define OUTPUT_READABLE_YAWPITCHROLL

// #define OUTPUT_TEAPOT

Es decir, la de arriba sin las barras de comentario y la de abajo con las barras de comentario.

MPU6050_DMP6.ino
// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using DMP (MotionApps v2.0)
// 6/21/2012 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//     2012-06-21 - added note about Arduino 1.0.1 + Leonardo compatibility error
//     2012-06-20 - improved FIFO overflow handling and simplified read process
//     2012-06-19 - completely rearranged DMP initialization code and simplification
//     2012-06-13 - pull gyro and accel data from FIFO packet instead of reading directly
//     2012-06-09 - fix broken FIFO read sequence and change interrupt detection to RISING
//     2012-06-05 - add gravity-compensated initial reference frame acceleration output
//                - add 3D math helper file to DMP6 example sketch
//                - add Euler output and Yaw/Pitch/Roll output formats
//     2012-06-04 - remove accel offset clearing for better results (thanks Sungon Lee)
//     2012-06-01 - fixed gyro sensitivity to be 2000 deg/sec instead of 250
//     2012-05-30 - basic DMP initialization working

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#include "Wire.h"

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;

/* =========================================================================
NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch
depends on the MPU-6050's INT pin being connected to the Arduino's
external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is
digital I/O pin 2.
* ========================================================================= */

/* =========================================================================
NOTE: Arduino v1.0.1 with the Leonardo board generates a compile error
when using Serial.write(buf, len). The Teapot output uses this method.
The solution requires a modification to the Arduino USBAPI.h file, which
is fortunately simple, but annoying. This will be fixed in the next IDE
release. For more info, see these links:

http://arduino.cc/forum/index.php/topic,109987.0.html
http://code.google.com/p/arduino/issues/detail?id=958
* ========================================================================= */



// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
//#define OUTPUT_READABLE_QUATERNION

// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER

// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define OUTPUT_READABLE_YAWPITCHROLL
// La línea superior debe estar así. // uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration // components with gravity removed. This acceleration reference frame is // not compensated for orientation, so +X is always +X according to the // sensor, just without the effects of gravity. If you want acceleration // compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead. //#define OUTPUT_READABLE_REALACCEL // uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration // components with gravity removed and adjusted for the world frame of // reference (yaw is relative to initial orientation, since no magnetometer // is present in this case). Could be quite handy in some cases. //#define OUTPUT_READABLE_WORLDACCEL // uncomment "OUTPUT_TEAPOT" if you want output that matches the // format used for the InvenSense teapot demo // #define OUTPUT_TEAPOT
// La línea superior debe estar así. #define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6) bool blinkState = false; // MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer[64]; // FIFO storage buffer // orientation/motion vars Quaternion q; // [w, x, y, z] quaternion container VectorInt16 aa; // [x, y, z] accel sensor measurements VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements VectorFloat gravity; // [x, y, z] gravity vector float euler[3]; // [psi, theta, phi] Euler angle container float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector // packet structure for InvenSense teapot demo uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' }; // ================================================================ // === INTERRUPT DETECTION ROUTINE === // ================================================================ volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high void dmpDataReady() { mpuInterrupt = true; } // ================================================================ // === INITIAL SETUP === // ================================================================ void setup() { // join I2C bus (I2Cdev library doesn't do this automatically) Wire.begin(); // initialize serial communication // (115200 chosen because it is required for Teapot Demo output, but it's // really up to you depending on your project) Serial.begin(115200); while (!Serial); // wait for Leonardo enumeration, others continue immediately // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to // the baud timing being too misaligned with processor ticks. You must use // 38400 or slower in these cases, or use some kind of external separate // crystal solution for the UART timer. // initialize device Serial.println(F("Initializing I2C devices...")); mpu.initialize(); // verify connection Serial.println(F("Testing device connections...")); Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed")); // wait for ready Serial.println(F("\nSend any character to begin DMP programming and demo: ")); while (Serial.available() && Serial.read()); // empty buffer while (!Serial.available()); // wait for data while (Serial.available() && Serial.read()); // empty buffer again // load and configure the DMP Serial.println(F("Initializing DMP...")); devStatus = mpu.dmpInitialize(); // make sure it worked (returns 0 if so) if (devStatus == 0) { // turn on the DMP, now that it's ready Serial.println(F("Enabling DMP...")); mpu.setDMPEnabled(true); // enable Arduino interrupt detection Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)...")); attachInterrupt(0, dmpDataReady, RISING); mpuIntStatus = mpu.getIntStatus(); // set our DMP Ready flag so the main loop() function knows it's okay to use it Serial.println(F("DMP ready! Waiting for first interrupt...")); dmpReady = true; // get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize(); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it's going to break, usually the code will be 1) Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); } // configure LED for output pinMode(LED_PIN, OUTPUT); } // ================================================================ // === MAIN PROGRAM LOOP === // ================================================================ void loop() { // if programming failed, don't try to do anything if (!dmpReady) return; // wait for MPU interrupt or extra packet(s) available while (!mpuInterrupt && fifoCount < packetSize) { // other program behavior stuff here // . // . // . // if you are really paranoid you can frequently test in between other // stuff to see if mpuInterrupt is true, and if so, "break;" from the // while() loop to immediately process the MPU data // . // . // . } // reset interrupt flag and get INT_STATUS byte mpuInterrupt = false; mpuIntStatus = mpu.getIntStatus(); // get current FIFO count fifoCount = mpu.getFIFOCount(); // check for overflow (this should never happen unless our code is too inefficient) if ((mpuIntStatus & 0x10) || fifoCount == 1024) { // reset so we can continue cleanly mpu.resetFIFO(); Serial.println(F("FIFO overflow!")); // otherwise, check for DMP data ready interrupt (this should happen frequently) } else if (mpuIntStatus & 0x02) { // wait for correct available data length, should be a VERY short wait while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize); // track FIFO count here in case there is > 1 packet available // (this lets us immediately read more without waiting for an interrupt) fifoCount -= packetSize; #ifdef OUTPUT_READABLE_QUATERNION // display quaternion values in easy matrix form: w x y z mpu.dmpGetQuaternion(&q, fifoBuffer); Serial.print("quat\t"); Serial.print(q.w); Serial.print("\t"); Serial.print(q.x); Serial.print("\t"); Serial.print(q.y); Serial.print("\t"); Serial.println(q.z); #endif #ifdef OUTPUT_READABLE_EULER // display Euler angles in degrees mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetEuler(euler, &q); Serial.print("euler\t"); Serial.print(euler[0] * 180/M_PI); Serial.print("\t"); Serial.print(euler[1] * 180/M_PI); Serial.print("\t"); Serial.println(euler[2] * 180/M_PI); #endif #ifdef OUTPUT_READABLE_YAWPITCHROLL // display Euler angles in degrees mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); Serial.print("ypr\t"); Serial.print(ypr[0] * 180/M_PI); Serial.print("\t"); Serial.print(ypr[1] * 180/M_PI); Serial.print("\t"); Serial.println(ypr[2] * 180/M_PI); #endif #ifdef OUTPUT_READABLE_REALACCEL // display real acceleration, adjusted to remove gravity mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetAccel(&aa, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); Serial.print("areal\t"); Serial.print(aaReal.x); Serial.print("\t"); Serial.print(aaReal.y); Serial.print("\t"); Serial.println(aaReal.z); #endif #ifdef OUTPUT_READABLE_WORLDACCEL // display initial world-frame acceleration, adjusted to remove gravity // and rotated based on known orientation from quaternion mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetAccel(&aa, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q); Serial.print("aworld\t"); Serial.print(aaWorld.x); Serial.print("\t"); Serial.print(aaWorld.y); Serial.print("\t"); Serial.println(aaWorld.z); #endif #ifdef OUTPUT_TEAPOT // display quaternion values in InvenSense Teapot demo format: teapotPacket[2] = fifoBuffer[0]; teapotPacket[3] = fifoBuffer[1]; teapotPacket[4] = fifoBuffer[4]; teapotPacket[5] = fifoBuffer[5]; teapotPacket[6] = fifoBuffer[8]; teapotPacket[7] = fifoBuffer[9]; teapotPacket[8] = fifoBuffer[12]; teapotPacket[9] = fifoBuffer[13]; Serial.write(teapotPacket, 14); teapotPacket[11]++; // packetCount, loops at 0xFF on purpose #endif // blink LED to indicate activity blinkState = !blinkState; digitalWrite(LED_PIN, blinkState); } }

3.- Lo ejecutamos. Nos pedirá que escribamos cualquier carácter.

4.- Deberá salir una serie de números correspondientes a los valores captados por el giroscopio al moverlo.

-----------------------------------------------------------------------------------------------------------------------------------------

5. Ahora vamos a mover un gráfico. Para ello vamos al Processing.

Baja esta librería: toxiclibs.zip de https://bitbucket.org/postspectacular/toxiclibs/downloads/

La debes copiar en la carpeta libraries del Processing, en mi caso está carpeta está en mis Documentos de usuario de Windows.

Biblioteca / Documentos / Processing / libraries

6.- En el Processing, pulsamos en Archivo / Abrir... y localizamos el archivo MPUTeapot.pde que se encuentra en la carpeta de la librería MPU6050 que copiamos anteriormente para el Arduino en su carpeta de libraries. Abrimos el archivos que se encuentra dentro de la carpeta MPUTeapot.

Arduino \ libraries \ MPU6050 \ Examples \ MPU6050_DMP6 \ Processing \MPUTeapot \ MPUTeapot.pde

7.- Pulsamos sobre la flecha de ejecutar. Saldrá el dibujo de un avión que se moverá al mover el giroscopio.

- Este código lo que hace es tomar los datos que el Arduino está enviando a su puerto COM21 y trabajar con ellos.

- En mi caso el puerto que está utilizando mi Arduino es el COM21, en otros casos puede utilizar otros puertos.

- En el código existen estas líneas...

- Si dejamos la línea String portName = Serial.list()[[0]; tomará el primer puerto COM que encuentre en funcionamiento.

- Si ponemos la línea String porName = "COM21"; tomará ese puerto.

- El Serial Monitor del Arduino deberá estar quitado.

- Si en algún momento sale que el puerto COM21 está en uso, quitamos el Serial Monitor o incluso desconectamos y conectamos el cable USB del Arduino.

 

____________________
Consultas.

 

http://hetpro-store.com/TUTORIALES/acelerometro-mpu-6050-6dof/

http://www.varesano.net/blog/fabio/initial-tests-freeimu-v04-and-mpu6050

http://www.varesano.net/projects/hardware/FreeIMU

Movimiento del ratón. Arduino Leonardo conectado por USB al ordenador:

Movimiento del ratón mediante Bluetooth.

http://www.arduinoecia.com.br/2015/04/acelerometro-giroscopio-mpu-6050.html

http://bildr.org/2012/03/stable-orientation-digital-imu-6dof-arduino/

http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-osiowy-zyroskop-l3g4200d.html otro chip el L3G4200

________________________________

- Mi correo:
juana1991@yahoo.com
- KIO4.COM - Política de cookies. Textos e imágenes propiedad del autor:
© Juan A. Villalpando
No se permite la copia de información ni imágenes.
Usamos cookies propias y de terceros que entre otras cosas recogen datos sobre sus hábitos de navegación y realizan análisis de uso de nuestro sitio.
Si continúa navegando consideramos que acepta su uso. Acepto    Más información